21,865 research outputs found

    Alfv\'enic instabilities driven by runaways in fusion plasmas

    Full text link
    Runaway particles can be produced in plasmas with large electric fields. Here we address the possibility that such runaway ions and electrons excite Alfv\'enic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions.Comment: 11 pages, 3 figure

    Semiparametric inference in mixture models with predictive recursion marginal likelihood

    Full text link
    Predictive recursion is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture models. In semiparametric mixture models, however, the algorithm fails to account for any uncertainty in the additional unknown structural parameter. As an alternative to existing profile likelihood methods, we treat predictive recursion as a filter approximation to fitting a fully Bayes model, whereby an approximate marginal likelihood of the structural parameter emerges and can be used for inference. We call this the predictive recursion marginal likelihood. Convergence properties of predictive recursion under model mis-specification also lead to an attractive construction of this new procedure. We show pointwise convergence of a normalized version of this marginal likelihood function. Simulations compare the performance of this new marginal likelihood approach that of existing profile likelihood methods as well as Dirichlet process mixtures in density estimation. Mixed-effects models and an empirical Bayes multiple testing application in time series analysis are also considered

    Distribution of lactic acid between plasma and red cells during work and recovery

    Get PDF
    Lactic acid concentrations in plasma and red cells during work and recover

    Bystanders, parcelling, and an absence of trust in the grooming interactions of wild male chimpanzees

    Get PDF
    The evolution of cooperation remains a central issue in socio-biology with the fundamental problem of how individuals minimize the risks of being short-changed (‘cheated’) should their behavioural investment in another not be returned. Economic decisions that individuals make during interactions may depend upon the presence of potential partners nearby, which o ers co operators a temptation to defect from the current partner. The parcelling model posits that donors subdivide services into parcels to force cooperation, and that this is contingent on opportunities for defection; that is, the presence of bystanders. Here we test this model and the e ect of bystander presence using grooming interactions of wild chimpanzees. We found that with more bystanders, initiators gave less grooming at the beginning of the bout and were more likely to abandon a grooming bout, while bouts were less likely to be reciprocated. We also found that the groomer’s initial investment was not higher among frequent groomers or stronger reciprocators, suggesting that contrary to current assumptions, grooming decisions are not based on trust, or bonds, within dyads. Our work highlights the importance of considering immediate social context and the in uence of bystanders for understanding the evolution of the behavioural strategies that produce cooperation

    Evaluation of buffer-radius modelling approaches used in forest conservation and planning

    Get PDF
    Spatial modelling approaches are increasingly being used to direct forest management and conservation planning at the landscape scale. A popular approach is the use of buffer-radius methods, which create buffers around distinct forest habitat patches to assess habitat connectivity within anthropogenic landscapes. However, the effectiveness and sensitivity of such methods have rarely been evaluated. In this study, Euclidean and least-cost buffer-radius approaches were used to predict functional ecological networks within the wooded landscape of the Isle of Wight (UK). To parameterize the models, a combination of empirical evidence and expert knowledge was used relating to the dispersal ability of a model species, the wood cricket (Nemobius sylvestris Bosc.). Three scenarios were developed to assess the influence of increasing the amount of spatial and species-specific input data on the model outcomes. This revealed that the level of habitat fragmentation for the model species is likely to be underestimated when few empirical data are available. Furthermore, the least-cost buffer approach outperformed simple Euclidean buffer in predicting presence and absence for the model species. Sensitivity analyses on model performance revealed high sensitivity of the models to variation in buffer distance (i.e. maximum dispersal distance) and permeability of common landscape features such as roads, watercourses, grassland and semi-natural habitat. This indicates that when data are lacking with which to parameterize buffer-radius models, the model outcomes need to be interpreted with caution. This study also showed that if sufficient empirical data are available, least-cost buffer approaches have the potential to be a valuable tool to assist forest managers in making informed decisions. However, least-cost approaches should always be used as an indicative rather than prescriptive management tool to support forest landscape conservation and planning

    Stellarator bootstrap current and plasma flow velocity at low collisionality

    Get PDF
    The bootstrap current and flow velocity of a low-collisionality stellarator plasma are calculated. As far as possible, the analysis is carried out in a uniform way across all low-collisionality regimes in general stellarator geometry, assuming only that the confinement is good enough that the plasma is approximately in local thermodynamic equilibrium. It is found that conventional expressions for the ion flow speed and bootstrap current in the low-collisionality limit are accurate only in the 1/ν1/\nu-collisionality regime and need to be modified in the ν\sqrt{\nu}-regime. The correction due to finite collisionality is also discussed and is found to scale as ν2/5\nu^{2/5}

    Old carbon contributes to aquatic emissions of carbon dioxide in the Amazon

    Get PDF
    Knowing the rate at which carbon is cycled is crucial to understanding the dynamics of carbon transfer pathways. Recent technical developments now support measurement of the <sup>14</sup>C age of evaded CO<sub>2</sub> from fluvial systems, which provides an important "fingerprint" of the source of C. Here we report the first direct measurements of the <sup>14</sup>C age of effluxed CO<sub>2</sub> from two small streams and two rivers within the western Amazonian Basin. The rate of degassing and hydrochemical controls on degassing are also considered. We observe that CO<sub>2</sub> efflux from all systems except for the seasonal small stream was <sup>14</sup>C -depleted relative to the contemporary atmosphere, indicating a contribution from "old" carbon fixed before ~ 1955 AD. Further, "old" CO<sub>2</sub> was effluxed from the perennial stream in the rainforest; this was unexpected as here connectivity with the contemporary C cycle is likely greatest. The effluxed gas represents all sources of CO<sub>2</sub> in the aquatic system and thus we used end-member analysis to identify the relative inputs of fossil, modern and intermediately aged C. The most likely solutions indicated a contribution from fossil carbon sources of between 3 and 9% which we interpret as being derived from carbonate weathering. This is significant as the currently observed intensification of weather has the potential to increase the future release of old carbon, which can be subsequently degassed to the atmosphere, and so renders older, slower C cycles faster. Thus <sup>14</sup>C fingerprinting of evaded CO<sub>2</sub> provides understanding which is essential to more accurately model the carbon cycle in the Amazon Basin
    • …
    corecore